This Summer, Felicia Zhang and I are developing an online course with the Princeton McGraw Center for Teaching and Learning. Below is an overview of the course, which will be accessible in Fall, 2018:

Two of the biggest challenges for undergraduates in psychology are *understanding* key concepts in statistics and *applying* those concepts to analyze data and interpret findings. These challenges not only make it difficult for students to understand material in lectures and labs, but also difficult for instructors to help the students because students feel defeated and become unwilling to engage with the course. Therefore, we are designing an online course to introduce statistics and R programming. Integrating statistics and R programming in one course is ideal for learning: The former is essential for students to understand research more broadly and the latter is an important tool for students to engage with research directly. For example, a psychology student must interpret statistical results from prior experiments as well as analyze their own data for their senior thesis. In sum, our course is designed to help students who have minimal prior experience to *understand* key concepts in statistics and to *apply* those concepts to realistic problems in psychology research.

The course will include 6 modules (i.e., getting started with statistics; getting started with R; descriptive statistics; correlation; one-sample t-test and binomial test; two-sample t-test) and each module will have the same basic structure: The first portion helps students to *understand* key concepts. Students will watch narrated text, live drawings, or videos. To assess students’ understanding, students will complete multiple choice questions. The next portion of the module helps students to *apply* key concepts via R programming. First, we will pose realistic psychology research questions (e.g., Do toddlers who hear more language from caregivers tend to have larger vocabularies?). Students will observe how we answer each question with the appropriate statistical test (e.g., correlation) and R syntax (e.g., cor.test(data$language, data$vocabulary)). Next, we will pose new, similar questions (e.g., Do toddlers who have more books at home tend to hear more language from caregivers?) and students will attempt to answer these questions. To assess students’ understanding, students will input their answers and receive feedback. The last portion of the module helps students to *review *key concepts. Students will watch narrated text, live drawings, or videos. Finally, to assess students’ overall understanding, students will complete a module quiz.

After participating in our course, students will have fundamental knowledge of statistics and R programming. Although both are extremely important for students in psychology, students need more resources to understand key concepts in statistics and to apply those concepts to real research (e.g., their senior thesis). Our course will provide these resources, with two notable strengths: First, unlike other online R programming courses, we will use realistic, psychology-specific examples. This design enables direct connections between what students learn in lecture, in lab, and in our online course. Second, although our course is tailored to the needs of psychology students, having basic knowledge of statistics and R programming is applicable to a growing number of fields (e.g., sociology, politics, etc.). In sum, our online course will support learning among undergraduates in psychology and could have wide-reaching impact among undergraduates in science, more broadly.